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In this paper, the stability of a uniformly driven granular layer is examined by
linear stability analysis. This includes two main steps: first the base state at various
values of mass holdup (Mt ) and energy input (Qt ) is calculated; and, secondly, small
perturbations are introduced to verify the stability of the base state by solving the
linearized governing equations and corresponding boundary conditions. Results from
the base-state solution show that, for a given pair of Mt and Qt , solid fraction tends to
increase at first up the layer height and then decrease after a certain vertical position.
In contrast, granular temperature decreases rapidly from the bottom plate to the top
surface. The stability diagram is constructed by checking the eigenvalues at different
points in the (Mt , Qt ) plane, and their dependence on the operating conditions and
materials properties is also investigated. For the unstable regime, pattern formation
is illustrated with the variation of solid fraction with vertical position. For the
layer mode, there are no variations at different horizontal positions. In contrast, a
periodic feature is found for the stationary mode in which alternating particle clusters
and voids are observed in the horizontal direction. By introducing perturbations in
different directions, we have produced surface patterns such as stripes, squares and
hexagons. Besides the solid fraction distribution, other variables such as the profiles
of velocities and granular temperatures are also examined.

1. Introduction
Granular material undergoing vertical vibration is of interest to engineers and

scientists for both practical and theoretical reasons. For instance, shakers are widely
used in mixing, separation and particle drying processes, commonly seen in industries
such as mining, agriculture, pharmacy and construction. The occurrence of complex
behaviours in the assembly, such as the formation of travelling waves (Pak &
Behringer 1993) and standing waves (Umbanhowar 1997) on the free surface, has
provided an exciting challenge to fundamental research in powder technology.

Various planar patterns like stripes, squares and hexagons, together with local
structures like spirals and oscillons have recently been investigated in experiments
(Melo, Umbanhowar & Swinney 1994, 1995; Umbanhowar, Melo & Swineey 1996,
1998; Umbanhowar & Swinney 2000; Metcalf, Knight & Jaeger 1997; Clement et al.
1996), and possible mechanisms have also been proposed to explain the instabilities
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that appear (Aoki & Akiyama 1996; Luding et al. 1994; Tsimring & Aranson 1997;
Shinbrot 1997; Bizon et al. 1998a, 1999). Bizon et al. (1998b) applied discrete particle
simulations to the study of convection and diffusion in this system and the results
obtained compared well with experiments. However, most of the work concentrates
on the surface patterns, and further theoretical/simulation models are necessary to
explain the findings from experiments in all aspects of these systems.

A stability analysis method based on the grain kinetic theory has been successfully
applied to study the instabilities occurring in granular flow systems (Wang, Sundaresan
& Jackson 1997; Wang & Tong 2001). In the application of hydrodynamic equations
to granular flows, Kadanoff (1999) found that some behaviours in the one-
dimensional system could not be predicted by any hydrodynamic type of analysis while
hydrodynamics seems to work very well for the two-dimensional system. Although it
had been argued that a continuum model is not always successful for all granular
flows, Shattuck et al. (1999) proved that in a certain case (e.g. vertically vibrated layer)
the results from kinetic theory agree remarkably well with those from event-driven
molecular dynamics simulations.

In this paper, the method mentioned above is used to examine the instabilities
appearing in granular material undergoing vertical vibrations. A base-state solution
is first found by solving the macroscopic balance equations based on the grain kinetic
theory, and secondly, small perturbations are introduced to examine the stability of
the corresponding base state and the resultant new patterns that may develop.

2. Governing equations
Figure 1 shows the case to be studied. A bed (height H0, mass holdup mp) of

granular material (particle density ρp , particle diameter dp) is placed on top of a
vertically vibrated flat plate. Here mass holdup is defined as the mass of particles
per unit area of the bottom plate. This process is simplified by taking an average
over one period of particle movement, thus the energy flux supplied from the bottom
plate to the granular layers can be viewed as constant (denoted by Q0), and the bed
expands from its original height to H . Note that such an averaging method turns
the vibrated bed problem into a uniformly driven layer, thus the following stability
analysis will be for this situation only. In the base state, the free surface of the
granular materials is flat. The zero point of the y-axis is set at the centreline of the
vibrating bottom plate, and x and z are assumed to be infinite because the shape and
size of the container do not influence the stability of the system when the dimension
of container is much greater than the particle size (Melo et al. 1994). The ‘flow field’
is considered as steady, and the mean velocity of particles in all directions is zero.
Furthermore, the friction between particles is neglected and only inelastic collisions
are considered during particle–particle and particle–wall contact.

The conservation equations of mass, momentum and pseudo-thermal energy are
those used by Johnson & Jackson (1987), Wang et al. (1997) and Wang & Tong (1998,
2001):

continuity:
∂ρ

∂t
+ ∇ · (ρu) = 0, (1)

momentum: ρ
Du
Dt

= −ρg − ∇ · σ , (2)

energy:
3

2
ρ

DT

Dt
= −∇ · q − σ : ∇u − J. (3)
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Figure 1. Granular material under vertical vibrations. A and f are the vibration
acceleration and frequency, respectively. g is the gravitational acceleration.

Here g is the gravity force; ρ is the bulk density of the material, given by ρ = ρpν,
where ν is the volume fraction of solids; u is the local mean velocity; σ is the stress
tensor for the granular assembly; T is the granular temperature, defined as (1/3)〈u′2〉,
where u′ is the magnitude of the fluctuation about the local mean velocity; q is the
flux vector of the pseudo-thermal energy associated with the fluctuations in particle
velocity; and J denotes the rate of dissipation of this energy, per unit volume, by
inelastic collisions between particles. D/Dt represents the material time derivative
following the mean motion.

The constitutive relationships for σ , q and J are those of Lun et al. (1984), namely

σ = [ρT (1 + 4ηνg0) − ηµb∇ · u]I

−
(

2 + α

3

){
2µ

η(2 − η)g0

(
1 + 8

5
ηνg0

) [
1 + 8

5
η(3η − 2)νg0

]
+ 6

5
µbη

}
S, (4)
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Particle diameter, dp (m) 0.0005
Solid material density, ρp (kg/m3) 2500
Particle-particle coefficient of restitution, ep 0.9
Particle-wall coefficient of restitution, ew 0.5
Specularity coefficient for wall collision, φ′ 0.6
Parameter, α, in equation (4) 1.6

Table 1. Parameters used in the simulation.

q = − λ

g0

{(
1 + 12

5
ηνg0

) [
1 + 12

5
η2(4η − 3)νg0

]
+

64

25π
(41 − 33η)(ηνg0)

2

}
∇T

− λ

g0

12
5
η(η − 1)(2η − 1)

(
1 + 12

5
ηνg0

) d

dν
(ν2g0)

T

ν
∇ν, (5)

J =
48

π0.5
η(1 − η)

ρP ν2

dP

g0T
1.5, (6)

where S is the deviatoric part of the rate of deformation:

S = 1
2
(∇u + ∇uT ) − 1

3
(∇ · u)I,

and η is related to ep , the coefficient of restitution for the collisions between particles:

η = 1
2
(1 + eP ).

The two viscosity factors µ and µb, and the thermal conductivity coefficient λ, are
given by

µ =
5M(T/π)0.5

16d2
P

, µb =
256µν2g0

5π
, λ =

75M(T/π)0.5

8η(41 − 33η)d2
P

,

where M and dp are the mass and diameter of a particle, respectively. For g0 we
adopt the form used by Johnson & Jackson (1987), namely

g0(ν) =
1

1 − (ν/νm)1/3

where νm is the solids volume fraction at closest packing, taken to be 0.65. Except for
special cases indicated, the values of ρp, dp and other parameters used in the present
simulation are given in table 1.

Boundary conditions at the bottom plate, which take account of momentum and
energy transfer between the wall and the materials, are the same as those used by
Johnson & Jackson (1987),

t · σ · n +

(
π

√
3

6νm

)
φ′ρP νg0(ν)T 1/2usl = 0, (7)

n · q =

(
π

√
3

6νm

)
φ′ρP νg0(ν)T 1/2u2

sl + Q0 −
(

π
√

3

4νm

)(
1 − e2

w

)
ρP νg0(ν)T 3/2. (8)

In equations (7) and (8), n is the unit normal to the wall, pointing into the granular
material, usl is the velocity of the granular material in contact with the wall, and t is
a unit vector tangent to the wall, in the direction of the slip velocity. The nature of
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the plate is characterized by φ′, a specularity factor (which measures the fraction of
the momentum of an incident particle in the direction of slip which is transmitted,
on average, to the wall in a collision), and ew , is the coefficient of restitution for
collisions between particles and the wall. Since the value of usl is zero for the base
state, equation (7) is satisfied trivially.

One boundary condition at the free surface can be obtained by examining the
force balance for particles in the top layer, that is, gravity should be balanced by the
supporting force from the material

M g = (n · σ )ac, (9a)

where ac is the effective area occupied by a particle

ac = d2
P

(
νm

ν

)2/3

. (9b)

Another boundary condition is obtained from the fact that there is no energy input
at the free surface, thus

n · q = 0. (10)

Dimensionless variables are introduced as follows:

(X, Y, Z) =
(x, y, z)

H
, (U ∗, V ∗, W ∗) =

(U, V, W )√
gH

, T ∗ =
T

gdp

, τ =
t√

H/g
, (11)

and

Mt =
mP

ρP dP

, Qt =
Q0

ρP (dP g)3/2
. (12)

After substitution and non-dimensionlization, the base-state equations have the
following form:

1

C

∫ 1

Y

ν dY = f1(ν)T ∗ − π

6

(
ν

νm

)2/3

, (13)

∂

∂Y

[
f3(ν)T ∗1/2 dT ∗

dY
+ f4(ν)T ∗3/2 dν

dY

]
− 1

C2
f5(ν)T ∗3/2 = 0, (14)

together with the boundary conditions

Y = 0: f3(ν)T ∗1/2 dT ∗

dY
+ f4(ν)T ∗3/2 dν

dY
=

(
1 − e2

w

)
f3(ν)f6(ν)T ∗3/2

C
− Q0

CρP g3/2d
3/2
P

,

(15)

Y = 1: f3(ν)T ∗1/2 dT ∗

dY
+ f4(ν)T ∗3/2 dν

dY
= 0, (16)

where the dimensionless group C is given by

C = dP /H. (17)

The dimensionless functions f1−f9 (some are used in the stability analysis) are listed
in table 2.

A finite difference method is used here to solve the above equations. The interval
of [0,1] on the Y -axis is divided into 100 sub-intervals, and both the equations and
boundary conditions are discretized at the grid points. Given the values of Mt and
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f1(ν) = ν[1 + 4ηνg0(ν)]

f2(ν) =
(2 + α)5π1/2

288η(2 − η)

[
1

g0(ν)
+

8

5
ην

] [
1 +

8

5
η (3η − 2) νg0(ν)

]
+

(2 + α) 8ην2g0(ν)

15π1/2

f3(ν) =
25π1/2

16η (41 − 33η)

{[
1

g0(ν)
+

12

5
ην

] [
1 +

12

5
η2 (4η − 3) νg0(ν)

]
+

64

25π
(41 − 33η) η2ν2g0(ν)

}

f4(ν) =
25π1/2

16η (41 − 33η)

[
1

νg0(ν)
+

12

5
η

]
12

5
η (2η − 1) (η − 1)

d

dν
[ν2g0(ν)]

f5(ν) =
48η (1 − η) ν2g0(ν)

π1/2

f6(ν) =
π

√
3νg0(ν)

4νmf3(ν)

f7(ν) =
πνg0(ν)

2
√

3νmf3(ν)

f8(ν) =
πνg0(ν)

2
√

3νmf2(ν)

f9(ν) =
8ην2g0(ν)

3π1/2

Table 2. Dimensionless functions.

Qt , a bed height H1 is first estimated, and the values of ν and T ∗ at different Y

positions can be calculated through an iteration process. By integrating the solid
fraction obtained along the Y-direction, the mass holdup of granular materials can
be obtained:

Mt (cal.) =
H

dp

∫ 1

0

ν dY . (18)

If this value is not close enough to Mt , a new H1 will be generated by a variable-step
extrapolation method for the next loop of calculation; otherwise the program will
output the final solution of H as well as ν(Y ) and T ∗(Y ) for the base state. The code
is written in fortran language and run on the platform of fortran power station.
The spatial resolution (grid size effect) of the numerical method is shown in tables 3
and 4 (in Appendix B) for two characteristic points. The results show reasonable
convergence for grid-point number exceeding 50.

Next, the stability of these steady solutions to small perturbations is studied. Here
the motion of the material under vibration is no longer considered to be steady, and
the variables U ∗, V ∗, ν, T ∗ in the governing equations (1)–(3) and boundary conditions
(7)–(10) are expressed as the base-state solutions U0, V0, ν0, T0 (note that U0 and V0

are zero) plus small perturbations U ′, V ′, ν ′, T ′:




U ∗

V ∗

ν

T ∗


 =




U0(Y )

V0(Y )

ν0(Y )

T0(Y )


 +




U ′

V ′

ν ′

T ′


 =




U0(Y )

V0(Y )

ν0(Y )

T0(Y )


 +




Ue(Y )

Ve(Y )

νe(Y )

Te(Y )


 exp(Ωτ ) exp(iKxX). (19)
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Figure 2. Bed height as a function of energy input.

The perturbations here have the typical form adopted by Wang et al. (1997) and are
periodic in the horizontal dimension. The detailed form of the linearized governing
equations and boundary conditions can be found in Appendix A.

By adopting the method used by Wang et al. (1997), a set of ordinary differential
equations in the variables Ue, Ve, νe and Te, subject to two-point boundary conditions,
is obtained and constitutes an eigenvalue problem for Ω . This is converted to a
matrix eigenvalue problem by taking the finite-difference scheme, and the resulting
eigenvalues are computed with Matlab for sequential values of Kx to generate
a dispersion relation for each set of operating parameters of the problem.
Correspondingly, the eigenvectors can also be obtained for any area of interest.
The eigenvalues are then used to determine the stability of the original base state,
and the eigenvectors related to those unstable areas give important information about
the new patterns that will form. The grid size effect on the calculated eigenvalues is
shown in tables 5 and 6 (Appendix B) for two characteristic points. The results show
reasonable convergence for the grid-point number exceeding 200.

From the above analysis for both the base state and the perturbation state, it can be
seen that the only two operating parameters introduced are Mt and Qt . However, two
different parameters are sometimes used by some researchers: the original bed height,
H0, and the dimensionless acceleration amplitude, Γ (usually defined as 4π2Af 2/g,
where A is the vibration amplitude and f is the frequency). Mt is directly related to H0

by equation (18) if the solid fraction at the static state is fixed, while the relationships
among energy input, dimensionless acceleration and frequency are rather complex
and can only be determined by further theoretical and experimental work. However,
based on the theory of vibration, it can be concluded that the energy flux will increase
with increasing acceleration and decreasing frequency.

3. Base-state solution
The height of the granular bed at typical operating conditions is shown in figure 2.

For a certain mass holdup, the bed height increases with increased energy input. And
a higher mass holdup corresponds to a greater bed height when the energy is small;
however, if Qt is large enough (the particles are fully fluidized), the layer heights for
different values of mass holdup are almost the same. As stated above, a higher Γ

represents a higher Qt , thus figure 2 also shows that an increase in Γ results in an
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Figure 3. (a) Solid fraction distribution in the vertical direction for different values of energy
input and Mt = 3.5. (b) Solid fraction distribution in the vertical direction at different values
of mass holdup and Qt =34.99. The thin dashed lines are the solid fraction maxima.
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Figure 4. (a) Granular temperature distribution in the vertical direction at different values
of energy input and Mt = 3.5. (b) Granular temperature in the vertical direction at different
values of mass holdup and Qt = 34.99.

increase in bed height. Such a tendency agrees well with that observed in experiments
by Hunt, Hsiau & Hong (1994) and Brennen, Ghosh & Wassgren (1996).

The distribution of solid fraction in the Y -direction is shown in figure 3. For a given
pair of Mt and Qt , the solid fraction tends to increase at first up the layer height
and then decrease after a certain vertical position, forming a peak of density (marked
by a light dashed line) usually at Yc =0.7–0.9. As shown in figure 3(a), more energy
input results in a lower solid fraction at a fixed mass holdup, which is followed by
the expansion of the layer height; it also results in a shifting of Yc to a higher value.
Figure 3(b) indicates that the solid fraction increases with increased mass holdup for
the same energy input, accompanied by a slightly increase in Yc. The occurrence of
the densest part in the mid-bed may be due to the joint contributions of the energy
input from the bottom that scatters the particles and the unbounded movement of
particles at the free surface.

The temperature profile in the Y -direction is shown in figure 4. It can be seen
that the particle temperature decreases rapidly from the bottom to the top as a
result of the inelastic collisions between particles that dissipates the pseudo-thermal
energy originating from the bottom plate. When the energy supplied to a certain
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Figure 5. Energy distribution in the vertical direction. (a) Pseudo-thermal energy flux at
ew = 0.5 and 0.97 (Mt , Qt ) = (4.25, 58.31). (b) Energy fraction transferred upwards at different
values of energy input (ew =0.5 and Mt = 4.75). (c) Energy flux at different values of mass
holdup (ew = 0.5 and Qt = 104.96).

mass increases, the random motion of particles becomes more violent, resulting in
the increasing particle temperature in figure 4(a). The particle temperature reduces if
the vibration energy is used to activate more mass, as shown in figure 4(b).

It is important to have a detailed analysis of the energy flux in the vertical direction.
According to equation (8), part of the energy input from the bottom is dissipated
through the particle–wall collisions and the rest is transferred to the particles in upper
layers. This is seen in figure 5(a), in which a sudden drop in energy occurs at Y = 0.
This effect can be reduced by increasing ew , and the energy transferred upwards
decreases gradually up the bed height as a result of particle–particle collisions until
finally vanishes at the top surface. Figure 5(b) indicates that the fraction of energy
transferred to upper layers is almost the same at different values of Qt . In contrast,
figure 5(c) implies that the energy distribution in the vertical direction varies little for
different mass holdups. All this means that the division of energy between dissipation
and transfer is mainly dependent on the inelastic collision properties (ep and ew)
rather than the operating conditions (Mt and Qt ).

The wall properties must influence the base-state solution. As shown in figure 6,
when Mt =3.5, the distribution of solid fraction and particle temperature for
Qt = 23.32 at ew = 0.97 is the same as that for Qt = 69.97 at ew = 0.5. Both refer to
energy source walls although the increase in the particle–plate restitution coefficient
can reduce the energy needed to reach the same base-state profile.
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Figure 7. Comparison of the results of this work and predictions of Richman & Martin
(1992): (a) solid fraction, (b) granular temperature.

Richman & Martin (1992) calculated the profiles of solid fraction and particle
temperature in a vibrating bed based on the grain kinetic theory. The results were
confirmed by Lan & Rosato (1995) using a discrete element simulation method.
Experimental evidence can be found in Wildman, Huntley & Parker (2001a, b) and
Yang et al. (2002). These results are compared with the present work in figure 7. Since
no direct relationship exists between the energy input Qt (our parameter) and the
dimensionless root-mean-square velocity Vb (Richman’s parameter), the mass holdup
(Mt ) and the solid fraction at the bottom plate (ν0) are set equal in order to carry out
the comparison. The distribution of granular temperature agrees well; however some
differences are observed in the solid fraction profiles, especially at the free surface.
When (Mt, Qt ) = (5.0, 27.7), both models predict a ‘step change’ in solid fraction at the
free surface, which remains in our model at (Mt, Qt ) = (3.0, 19.8) while in Richman’s
model it varies smoothly to zero. The deviation may be due to the different boundary
conditions adopted in these two models: Richman & Martin assumed that the normal
stress at the top surface is zero instead of the force balance used in the present study.

However, we do not want to make a judgment about the suitability of the two
models. In fact, the base-state solution does not always exist in real experiments.
If the base state is stable, it can be observed; otherwise, the perturbations in the
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Figure 8. Stability diagram showing the contours of Ωr . Ωr = 0 is the neutral stability contour,
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grey curves are the real parts of the L-C and S-C eigenvalues, respectively. The thin dashed
curve is the dividing line between the layer mode and the stationary mode.

experimental conditions will change the original unstable base state into a new
stable one. For example, according to the stability diagram in the (Mt, Qt ) plane
(figure 8 in § 4), the base state at point (Mt, Qt ) = (5.0, 27.7) is stable but that at
point (Mt, Qt ) = (5.0, 80.0) is unstable and will evolve into a new state in which
the solid fraction smoothly approaches zero at the free surface as Richman’s model
suggests. (The details will be discussed later in the nonlinear analysis.) In this sense,
Richman’s model may present the final solution, while the solution obtained here is
an intermediate unstable base state. The stability of such base states is discussed in
the next section.

4. Stability diagram
Since both the mass holdup and energy input vary from zero to infinity, it is

necessary to narrow down the range of operating conditions to be examined. When
Mt is small, the granular-material bed will be very shallow. For example, Mt = 2 means
that the bed height in the static state is only three times the particle diameter, and so
it is difficult to form stable patterns. On the other hand, the layer at a large Mt may be
so thick that friction plays an important role in the particle–particle interaction, and
this is in conflict with the model assumption that friction is not taken into account. If
the energy supplied is too small, the base state will be stable because it does not have
the energy necessary to form a new state, and the upper limit for the energy input is
always determined by the vibration generator used in the experiments. Therefore, the
area of interest should reside in the middle of the (Mt, Qt ) plane.

The stability diagram of such an area is shown in figure 8. Because Mt and Qt

are the only two operating parameters used in the simulation, any point in the plane
represents a base state whose stability can be determined from this diagram.

Now we consider a point (Mt, Qt ). If N grid points are taken for in vertical direction
in the finite difference method, then for a fixed Kx , (4N -7) eigenvalues will be found,
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Figure 9. (a) Dispersion relation at point A (Mt , Qt ) = (3.0, 19.83). (b) Dispersion relation
at point B (Mt , Qt ) = (4.75, 51.31).

among which we choose the one with the largest real part eigenvalue as the leading
eigenvalue. The 4N -7 eigenvalues are obtained by considering the total number of
variables: 3(N-2) for the momentum equations (A 2) and (A 3) in the X- and Y -
directions and pseudo-thermal equation (A 4), and N − 1 for the continuity equation
(A 1). A group of leading eigenvalues can be obtained by scanning Kx in a wide
range, for example, the Ωr − Kx curve in figure 9 represents the real part of a set of
leading eigenvalues (Ωr ) at different values of Kx . Such a curve may have some local
maxima, such as the points marked by the circle and square. The eigenvalues related
to these local maxima are called the chief eigenvalues, among which the one with the
largest real part is referred to as the dominant eigenvalue (denoted by the circle shown
in regime I for figure 9(a) and the square shown in regime III for figure 9(b)). If
Ωr corresponding to the dominant eigenvalue is positive, perturbations in the form
of equation (19) will increase exponentially with time. We refer to the corresponding
base state as ‘unstable’; otherwise, the perturbations will vanish and hence the base
state is ‘stable’. Here, Ωr is an index for the growth rate of perturbations, and |Ωi |/Kx

is the phase velocity of the dominant density wave pattern.
The solid curves in figure 8 are contours of the real part of the chief eigenvalues,

marked with the relevant Ωr values. There are two sets of contours: one is called set
L (shown as thicker curves), corresponding to the point marked by a circle in figure 9
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where Kx is zero; the other is called set S (shown as thinner curves), corresponding
to the point marked by the square where Kx is positive. These two sets mix together
and the contours from one set cross those from the other. Moreover, all the contours
show that the growth rate increases with increased energy and reduced mass holdup.
Thus, the contours with a zero value of Ωr form the dividing line between the stable
and unstable areas: stable base states are found in the bottom-right corner of the
stability diagram, and in the top-left corner are the unstable base states.

The thin dashed curve in figure 8 consists of the intersections of two contours that
have the same value of Ωr but come from two different sets. Thus, any point on
this curve has two equal chief eigenvalues, one in set L and the other in set S. For
any point to the left of the curve, the contour from set L has a larger Ωr than that
from set S, which indicates that the chief eigenvalue from set L (denoted the L-C
eigenvalue) is the dominant eigenvalue; for points to the right of the curve, the chief
eigenvalue from set S (the S-C eigenvalue) is the dominant eigenvalue.

As stated above, the L-C eigenvalue always appears at the point where Kx is zero.
The perturbation form in equation (19) implies that the new pattern will be uniform
in the X-direction and only vary in the Y -direction. This indicates a layer mode. As
shown in figure 9, the phase velocity related to the S-C eigenvalue is always zero,
which means that the waves are standing waves and constitute the stationary mode.
Therefore, the light dashed curve is also the division between these two modes: to the
left the dominant mode is the layer mode, and to the right it is the stationary mode.

However, neither set L and set S is distributed throughout the whole region. The
heavy dashed curve in figure 9 shows the beginning of set S – contours in set S never
appear in the area to the top-left of the heavy dashed curve. On the other hand, the
heavy dashed-dotted curve in the top-right of figure 9 encloses a zone where only set
S exists.

To obtain more insight, we now fix the mass holdup and examine the change of
Ωr with increasing energy input. The results are shown in figure 10(a–c), with the
dimensionless mass holdup Mt = 2.75, 3.35 and 4.75, respectively.

As shown in figure 10(a), if the energy input is low (curve a′), the growth rate
is always negative, indicating that the corresponding state is stable for all kinds of
perturbation. When Qt is increased to a certain critical value, the real part of the
L-C eigenvalue reaches zero (b′), and the base state is at the least-stable point. This
corresponds to the point on the thick grey contour with the value of zero in figure 8.
With more energy input, the base state becomes unstable, and the L-C eigenvalue is
always dominant (c′ and d ′). On the other hand, the S-C eigenvalue tends to appear
at a smaller Kx for a higher energy input, and finally disappears and ‘blends in’ with
the L-C eigenvalue (e′).

Similarly, the base state in figure 10(b) becomes unstable when Qt is increased to
26.24 because the real part of the L-C eigenvalue is zero (a′). But when Qt = 30.32,
the L-C eigenvalue is equal to the S-C eigenvalue (b′), corresponding to a point on
the lower branch of the light dashed curve in figure 8. Beyond that point, the S-C
eigenvalue will be dominant (c′) until two the chief eigenvalues are again equal on
the upper branch of the light dashed curve (d ′). As Qt increases, the L-C eigenvalue
dominates again (e′) and finally the S-C eigenvalues disappear (f ′).

The situation at Mt = 4.75 is different from the previous case, as shown in
figure 10(c). The real part of the S-C eigenvalue first reaches zero at Qt =51.31
(a′), indicating that the stationary mode is dominant here. For curve (b′), the real part
of the L-C eigenvalue also reaches zero, but the S-C eigenvalue remains dominant.
When the energy input Qt continues to increase, the L-C eigenvalue begins to vanish
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Figure 10. The growth rate at different wavenumbers: (a) Mt = 2.75 and (a′) Qt =11.66, (b′)
Qt = 15.74, (c′) Qt = 29.15, (d ′) Qt = 34.99, (e′) Qt = 46.65. (b) Mt = 3.35 and (a′) Qt =26.24,
(b′) Qt = 30.32, (c′) Qt = 40.82, (d ′) Qt = 49.56, (e′) Qt = 52.48, (f ′) Qt = 58.31. (c) Mt = 4.75
and (a′) Qt =51.31, (b′) Qt =68.80, (c′) Qt = 79.30, (d ′) Qt =99.13, (e′) Qt = 114.29, (f ′) Qt =
126.45, (g′) Qt = 134.11.

(c′). In this case, there is only one peak in the Ωr–Kx curve (d ′). When Qt =114.29
the L-C eigenvalue reappears (e′); it then catches up with the S-C eigenvalue and
the stationary mode becomes a layer mode at Qt = 126.45 (f ′). Finally it becomes the
only existing chief eigenvalue (g′).

It is also of interest for engineering purposes to examine the stability profile by
varying the mass holdup at a fixed energy input Qt . As shown in figure 11, the system
remains a layer mode when the mass holdup is small (a′), and the L-C eigenvalue
is the only chief eigenvalue until Mt reaches 3.1 (b′). The newborn S-C eigenvalue
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continues to grow until it becomes the dominant eigenvalue after Mt =3.32 (c′), and
correspondingly the system enters the stationary mode. Such a situation continues
(d ′) until the real part of the dominant eigenvalue decreases to zero (e′), after which
the base state is always stable (curve f ′).

Figure 12 summarizes the dependence of the real part of the chief eigenvalues
on the energy input and mass holdup. For a fixed Mt , the chief eigenvalues form
two Ωr–Qt curves (one is for L-C eigenvalues and the other for S-C eigenvalues),
and the dominant eigenvalue for the base state depends on which curve is at the
top. When the mass holdup increases, the slope of the Ωr (S-C)–Qt curve tends to
decrease significantly while that of Ωr (L-C)–Qt decreases little. Therefore, although
the Ωr (L-C)–Qt curve is above the Ωr (S-C)–Qt curve at a small mass holdup
(i.e. Mt = 2.75), the opposite situation occurs at high Mt values (i.e. Mt = 4.25 and
4.75). The transition takes place at Mt = 3.35 where the two competing mechanisms –
formation of a layer mode or a stationary mode – are of about the same magnitude.
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Figure 13. The effect of (a) ew and (b) ep on the stability diagram.

The effects of ew and ep on the stability diagram are examined in figure 13. The solid,
dashed and dotted curves are the neutral stability contours (Ωr = 0) and correspond
to the least-stable states. The thin dashed-dotted curve joins the points (denoted
by circles) that separate the layer mode and the stationary mode. As shown in
figure 13(a), the energy needed to attain the least-stable state increases with deceasing
ew , and the range of the stationary mode is enlarged. If the case requiring a higher
energy input at the least-stable state is regarded as ‘more stable’, this means that a
high value of ew will destabilize the system. Figure 13(b) indicates that ep has the
same effect on destabilization as ew .

Therefore, it can be concluded that an increase in Qt, ep or ew will cause the base
state to be more unstable and these variables are referred to as ‘destabilizing’ factors.
On the other hand, any change that results in an increase of Mt (such as increasing
mp) can suppress the occurrence of instability, thus Mt is viewed as a ‘stabilizing’
factor. Significant differences exist between destabilizing and stabilizing factors: the
former is concerned with energy input while the latter is related to the mass loading
of the system; the former takes the system away from the base state while the latter
keeps it unchanged. The balance between these two opposing factors determines
whether a base state is stable or not.

However, this does not mean that ep and ew reach a value of 1 (that is, collisions
are fully elastic). In that case, all the vibration energy will be changed into mechanical
energy, and no stable base state can be obtained because the velocity of the particles
will increase infinitely. And, although Shinbrot (1997) stated that the surface patterns
can also form in the absence of gravity according to simulation results, this is not
practical because an endless expansion of the bed height will occur in this case.

For a mass holdup higher than a critical value Mtc, the stationary mode begins to
dominate in the Mt–Qt plane. The case reported in figure 10(c) is such an example
where standing waves appear when Qt is increased beyond Qtc1 = 51.31 but disappear
again above Qtc2 = 126.45. A detailed investigation of the wavelengths λx between
Qtc1 and Qtc2 is shown in figure 14. The wavelength increases slowly on increasing
the energy above Qtc1; however, a sharp increase in λx occurs when the energy
approaches Qtc2 until the wavelength is so large that no waves can be observed in a
dimension-limited container, denoting the transition from the stationary mode to the
layer mode. For a shallow bed with mass holdup lower than Mtc, our model suggests
that the flat layer is the dominant pattern without the occurrence of standing waves.
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5. Patterns in the vertical direction
In addition to the stability diagram, it is also important to find the new patterns

that form as a result of the destruction of the original unstable base state. Two points
(denoted by A and B in figure 8) in different modes are chosen to illustrate this
problem.

The dispersion relations of point A (Mt = 3.0, Qt = 19.83) are shown in figure 9(a).
The dominant eigenvalue is at Kx = 0, indicating a layer mode here. Regimes I and
III have a phase velocity of zero and thus imply a standing wave in the X-direction,
while regime II corresponds to a travelling wave.

It can be seen from figure 15 that the values of eigenvectors at Kx = 0 are not of the
same order of magnitude. The particle temperature is larger than the solid fraction,
and the Y -component velocity is the smallest. The eigenvector for the velocity in the
X-direction is not shown here because its real part is always zero. The absolute value
of the particle temperature decreases from the bottom to the top but that of the solid
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fraction tends to increase with height. The Y -component velocity is zero at the bottom
plate due to the boundary condition (given in (A 6)), and achieves its maximum at
the free surface.

The patterns of solid fraction forming in the vertical direction for Kx �= 0 are shown
in figure 16. The darker region in the figures represents the denser parts in the (X, Y )
plane. Panel (a) shows the standing wave in regime I; its high density fluctuations
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Figure 17. Patterns for different Kx at (Mt , Qt ) = (4.75, 51.31): (a) Kx = 0.1, (b) Kx = 0.5,
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are observed on the surface of the layer. Panels (b), (c) and (d) are in the travelling
wave regime where the wave speed is determined by |Ωi |/Kx . Unlike the standing
waves in panel (a), the patterns here are not symmetric about the line x/2λx = 0.5. By
comparing panels (b) and (c), it can also be seen that the speed and direction of the
travelling waves may influence the pattern appearance. The patterns in regime III,
denoted by panels (e) and (f ), are different from those in regime I. The dark (light)
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parts have the shape of islands with the highest (lowest) solid concentration in the
centre. For a large value of Kx , the centres of islands tend to move closer to the free
surface.

The dispersion relations of point B (Mt = 4.75, Qt = 51.31) are shown in figure 9(b).
This point is located in the least-stable stationary mode with its dominant eigenvalue
occurring at Kx = 2.2. Similar to point A, the patterns in regimes I and III are
standing waves while those in regime II are travelling waves.

Figure 17 shows the patterns at different values of Kx . Panel (a) has two cores in
the Y -direction: one is in the lower half and the other is near the surface. These two
cores/voids have similar solid fractions, that is both are dense or both are dilute. In
the travelling wave of panel (b), the upper core begins to move away from its original
horizontal position to above the neighbouring lower centre, as shown in panel (c).
In panel (d), where the standing wave in regime III begins, this movement has been
completed, and the pattern now has a dense core and a dilute void in the vertical
direction. Panel (e) has only one core left in the Y -direction and the islands mentioned
above appear. For higher values of Kx , the single central cluster will break into two
cores again, as shown in panel (f ).

The most important density wave patterns are the dominant patterns. Figure 18
shows the dominant eigenvector of the solid fraction at different energy inputs when
Mt =3.0 (in the dominant layer mode regime). If the energy is low (curve a′), the
solid fraction increases up the bed height until it reaches a critical value, and changes
little beyond that. With increasing vibration energy, the solid fraction tends to form
a peak in the middle of the bed (b′, c′, d ′).

Figure 19 shows the dominant pattern of solid fraction at different energy inputs
with a mass holdup Mt = 4.75 (in the dominant stationary mode regime). As shown
in panels (a) to (f ), the increase of input energy will change the patterns gradually
from one core in the middle to three cores in the vertical direction: two dense (dilute)
cores in the lower part and one dilute (dense) core at the surface.

6. Surface patterns
In order to trace the surface patterns, a three-dimensional form of perturbation is

introduced as follows instead of equation (19):
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Figure 19. Patterns corresponding to the dominant eigenvalue for different energy inputs
at Mt = 4.75: (a) Qt = 58.31, (b) Qt =68.80, (c) Qt = 87.46, (d) Qt = 99.13, (e) Qt = 110.79,
(f ) Qt =122.45.

[U ′, V ′, W ′, ν ′, T ′] = [Ue(Y ), Ve(Y ), We(Y ), νe(Y ), Te(Y )] exp(Ωτ ) exp(iKxX) exp(iKzZ).

(20)

Following similar deduction procedures as above, a matrix eigenvalue problem for
Ue, Ve, We, νe and Te is obtained and then computed with Matlab. Based on the



402 R. Deng and C.-H. Wang

Kx

0 0.5 1.0 1.5 2.0 2.5 3.0
–0.25

–0.20

–0.15

–0.10

–0.05

0

0.05

Kz  = 0
0.2

0.5

1.0

Xr

Figure 20. Effect of Kz on the Ωr–Kx curve, (Mt , Qt ) = (3.0, 19.83).

0 0.5 1.0 1.5 2.0 2.5 3.0

0.5

1.0

1.5

2.0

2.5

3.0

�

K�

–0.5

–0.4

–0.3

–0.2

–0.1

Kx

Kz

Figure 21. Contours of Ωr in the (Kx , Kz)-plane, (Mt , Qt ) = (3.0, 19.83).

eigenvalues and eigenvectors obtained, the stability of the system under the action of
three-dimensional perturbations can be determined.

Although Kz has been introduced, we can still plot the curves of Ωr vs. Kx as
shown in figure 20. While the value of Kz appears to affect the shape of the curves, it
cannot be concluded that Kz influences the stability diagram because the stability of
the base state for the three-dimensional perturbation cannot be obtained only by
examining the Ωr–Kx curve. The joint contributions of Kx and Kz to Ωr are shown
in figure 21, where the contours of Ωr appear to be symmetric around the origin in
the Kx–Kz plane; that is, the same curve of Ωr–Kθ will be obtained in any direction
for the angle θ in the range (0 � θ � π/2). For example, the curve Ωr–Kx (θ = 0)
has the same shape as Ωr–KZ (θ = π/2), indicating that they share the same leading
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Figure 22. Pattern of stripes: (a) a perturbation in the Z-direction; (b) stripes from the
simulation, (Mt , Qt ) = (4.75, 51.31), Kx =2.2.

eigenvalues. The introduction of Kz does not change the nature of the stability
diagram.

This conclusion agrees with the physical reality. Because both the X- and Z-
directions are considered infinite, the space is symmetric about any point in (X, Z)-
plane and all directions are indistinguishable. A perturbation in any direction will
have the same effect on the base state.

Now we focus on the patterns emerging at the free surface, including stripes,
squares, and hexagons. It should be pointed out that the patterns obtained here are
the time-average values over one period, which are different from those obtained from
experiments (Umbanhowar 1997). Point B (in the stationary mode regime) is selected
again for illustration.

As stated above, if a perturbation in the Z-direction (as shown in figure 22a) acts
on the base state given by point B, the patterns shown in figure 17 will develop in the
(X, Y )-plane with alternate clusters and voids at the top surface. Figure 22(b) shows
the top view of the dominant patterns simulated in a round-base container, where
the dark and bright parts are the dense and dilute zones, respectively. In fact, as we
will explain later, these are not only non-uniformities in solid concentration but also
stripes observed in the vertical direction.

According to the principle of superposition of waves, the net displacement of
granular material at any point in space or time is simply the sum of the individual
wave displacements. Therefore, if two or more perturbations act on the base state, the
surface pattern is the combination of waves caused by these perturbations. Assuming
that the waves come from the directions θ1 and θ2, the corresponding pattern of solid
fraction is described by

p(ν ′) = Re{νe[exp(iKθ1Lθ1) + exp(iKθ2Lθ2)]}. (21)

For example, two perpendicular perturbations such as shown in figure 23(a) cause
the formation of square patterns like those in figure 23(b). If three perturbations
with equal inclinations act on the base state, a kind of hexagon pattern as shown in
figure 24 will occur at the surface.

Here these are three selection mechanisms in determining the patterns. The first
is wavenumber selection, which has been solved in this model: only a perturbation
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Figure 23. Pattern of squares: (a) two perpendicular perturbations; (b) squares from
simulation, (Mt , Qt ) = (4.75, 51.31), Kx = 2.2.

0 0.2 0.4 0.6 0.8 1.0

0.2

0.4

0.6

0.8

1.0

x /D

z
D

X

Z

(a)                                                                                   (b)

� /3 � /3

Figure 24. Pattern of hexagons: (a) three perturbations with equal inclinations; (b) hexagons
from simulation, (Mt , Qt ) = (4.75, 51.31), Kx = 2.2.

with a certain wavenumber will be dominant for a base state. The second is pattern
selection: only specific patterns are favoured. For example, squares but not rhombi
can be observed although the inclination between two perturbations may be of any
possible angle. Unfortunately, similar to the problem faced by Tsimring & Aranson
(1997), the present model is insensitive to the angle between two standing waves.
The third is regime selection: the stripes, squares, hexagons and other patterns only
appear in a special range of operating conditions. This may be found by examining
the energy consumption with the nonlinear analysis and its effect on the long-term
behaviour of the patterns formation.

A study of other eigenvectors than solid fraction can be helpful in providing
insight into the evolution of the patterns predicted by the linear stability analysis. The
following discussion concentrates on the standing waves occurring at point B. From
the simulation results, the eigenvector of Ue is always found to be a pure imaginary
number when Ωi = 0 and cannot produce visible velocity in the horizontal direction;
thus it is not important in the consideration of standing waves.
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Figure 25. Vertical velocity distribution in the layer of granular material,
(Mt , Qt ) = (4.75, 51.31), Kx = 2.2.
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Figure 26. Profile of particle temperature in the (X, Y )-plane, (Mt,Qt ) = (4.75, 51.31),
Kx = 2.2.

As stated above, Ve increases from zero at the bottom plate to a peak at the top
surface. Therefore, the granular layers no longer remain static under the perturbation
but move towards their locations in the new stable base state (as a standing wave)
with non-zero finite velocities. As shown in figure 25, particles may move upwards or
downwards in different areas. The free surface does not remain flat, but peaks and
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valleys will form which finally evolve into stable wave patterns such as squares and
stripes.

Figure 26 shows the profile of Te in the (X, Y )-plane. It is periodic in the X-
direction and increases or decreases monotonically in the Y -direction. Thus, severe
non-uniformity in the distribution of granular temperature is expected in the new
base state to be formed.

By comparing with the νe profile shown in figure 15, we can illustrate the formation
of patterns. At the beginning, the perturbations of velocity, solid fraction and particle
temperature are very small in magnitude. As time passes, they begin to grow: in some
regions, the solid fraction becomes denser, particles move downwards and the particle
temperature increases; in other regions, the opposite changes occur at the same time.
This finally leads to a stable new base state with an uneven surface, while the detailed
evolution can be traced with the nonlinear stability analysis.

7. Conclusions
A simple assembly of granular material that is vertically vibrated exhibits many

and surprising behaviours. The model adopted here can examine many aspects of the
system such as base-state solutions, the stability diagram, and vertical and surface
patterns. Although, further improvement of model is required, such as constructing a
dispersion relation at high vibration frequencies and providing principles for pattern
and regime selections, this model provides insight into the instabilities of the whole
bed instead of only the surface patterns. Examination of the long-term behaviour of
the patterns predicted by the linear stability analysis is currently underway and may
offer a better understanding of the transition from one unstable state to new stable
base state.

This project is supported by National University of Singapore under the grant
R-279-000-095-112 and Singapore-MIT Alliance under the grant C382-429-003-091.
The authors thank Professor Kenneth A. Smith (MIT) for his valuable advice on the
patterns exploration. We also thank Dr. Jingsong Hua for his valuable suggestion
on the base state study and Dr. Madhusudana Rao Suryadevara for his help in the
preparation of this manuscript.

Appendix A. Linearized equations under the action of small perturbations
The equations of motion under the action of small perturbations can finally be

linearized as

∂ν ′

∂τ
+ ν0

∂U ′

∂X
+ ν0

∂V ′

∂Y
+

∂ν0

∂Y
V ′ = 0, (A 1)

− 1

C
ν0

∂U ′

∂τ
+ C1/2 ∂

∂Y

[
f2(ν0)T

1/2
0

]∂U ′

∂Y
+ C1/2 ∂

∂Y

[
f2(ν0)T

1/2
0

]∂V ′

∂X
− T0

∂f1

∂ν

∣∣∣∣ν0

∂ν ′

∂X

− f1(ν0)
∂T ′

∂X
+

[
C1/2f9(ν0)T

1/2
0 + 4

3
C1/2f2(ν0)T

1/2
0

]∂2U ′

∂X2
+ C1/2f2(ν0)T

1/2
0

∂2U ′

∂Y 2

+
[
C1/2f9(ν0)T

1/2
0 + 1

3
C1/2f2(ν0)T

1/2
0

] ∂2V ′

∂X∂Y
= 0, (A 2)



Instabilities of granular material undergoing vertical vibrations 407

− 1

C
ν0

∂V ′

∂τ
+

[
− 1

C
− ∂

∂Y

(
T0

∂f1

∂ν

∣∣∣∣ν0

)]
ν ′ − ∂f1

∂Y

∣∣∣∣ν0T
′ +

{
C1/2 ∂

∂Y

[
f9(ν0)T

1/2
0

]

− 2
3
C1/2 ∂

∂Y

[
f2(ν0)T

1/2
0

]}∂U ′

∂X
+

{
C1/2 ∂

∂Y

[
f9(ν0)T

1/2
0

]
+ 4

3
C1/2 ∂

∂Y

[
f2(ν0)T

1/2
0

]}∂V ′

∂Y

− T0

∂f1

∂ν

∣∣∣∣ν0

∂ν ′

∂Y
− f1(ν0)

∂T ′

∂Y
+

[
C1/2f9(ν0)T

1/2
0 + 1

3
C1/2f2(ν0)T

1/2
0

] ∂2U ′

∂X∂Y

+ C1/2f2(ν0)T
1/2
0

∂2V ′

∂X2
+

[
C1/2f9(ν0)T

1/2
0 + 4

3
C1/2f2(ν0)T

1/2
0

]∂2V ′

∂Y 2
= 0, (A 3)

− 3ν0

2C3/2

∂T ′

∂τ
− 3ν0

2C3/2

∂T0

∂Y
V ′ +

{
∂

∂Y

[
T

1/2
0

∂f3

∂ν

∣∣∣∣ν0

∂T0

∂Y

]
+

∂

∂Y

[
T

3/2
0

∂f4

∂ν

∣∣∣∣ν0

∂ν0

∂Y

]

− 1

C2
T

3/2
0

∂f5

∂ν

∣∣∣∣ν0

}
ν ′ +

{
∂

∂Y

[
1
2
f3(ν0)T

−1/2
0

∂T0

∂Y

]
+

∂

∂Y

[
3
2
f4(ν0)T

1/2
0

∂ν0

∂Y

]

− 3

2

1

C2
f5(ν0)T

1/2
0

}
T ′ − C−3/2f1(ν0)T0

∂U ′

∂X
− C−3/2f1(ν0)T0

∂V ′

∂Y
+

{
T

3/2
0

∂f4

∂ν

∣∣∣∣ν0

∂ν0

∂Y

+
∂

∂Y

[
f4(ν0)T

3/2
0

]
+ T

1/2
0

∂f3

∂ν

∣∣∣∣ν0

∂T0

∂Y

}
∂ν ′

∂Y
+

{
1
2
f3(ν0)T

−1/2
0

∂T0

∂Y
+ 3

2
f4(ν0)T

1/2
0

∂ν0

∂Y

+
∂

∂Y

[
f3(ν0)T

1/2
0

]}∂T ′

∂Y
+ f4(ν0)T

3/2
0

∂2ν ′

∂X2
+ f4(ν0)T

3/2
0

∂2ν ′

∂Y 2

+ f3(ν0)T
1/2
0

∂2T ′

∂X2
+ f3(ν0)T

1/2
0

∂2T ′

∂Y 2
= 0. (A 4)

Here (A 1) is the continuity equation, (A 2) and (A 3) are the two components of the
momentum balance, and (A 4) represents the balance of pseudo-thermal energy.

The corresponding boundary conditions at Y = 0 are
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n 10 30 50 70 100
∆ 0.1 0.0333 0.02 0.0143 0.01

H (10−2 m) 0.44016 0.43229 0.43166 0.43146 0.43137

ν0 Y = 0 0.16762 0.16905 0.1693 0.1692 0.16921
Y = 0.2 0.24738 0.2494 0.25 0.24972 0.24973
Y = 0.4 0.33773 0.34174 0.34248 0.34217 0.3422
Y = 0.6 0.41033 0.4165 0.41747 0.41718 0.41725
Y = 0.8 0.43415 0.44243 0.44366 0.44343 0.44354
Y = 1.0 0.35048 0.36049 0.3621 0.36198 0.36216

T ∗
0 Y = 0 7.21457 7.11055 7.09243 7.10043 7.09963

Y = 0.2 2.71386 2.66821 2.65923 2.66401 2.66375
Y = 0.4 0.96097 0.93267 0.92812 0.92998 0.92976
Y = 0.6 0.36451 0.34787 0.34552 0.34619 0.34603
Y = 0.8 0.17094 0.16041 0.15899 0.15924 0.15912
Y = 1.0 0.1203 0.11204 0.11075 0.11085 0.11071

Table 3. Base-state solutions for different grid sizes. Point A, (Mt , Qt ) = (3.0, 19.83).

n 10 30 50 70 100
∆ 0.1 0.0333 0.02 0.0143 0.01

H (10−2 m) 0.59128 0.57682 0.57565 0.57545 0.57526

ν0 Y = 0 0.13377 0.135 0.13501 0.1353 0.13525
Y = 0.2 0.23849 0.24076 0.24077 0.24128 0.24118
Y = 0.4 0.38141 0.3895 0.38984 0.39072 0.39065
Y = 0.6 0.50243 0.51415 0.51491 0.51574 0.51574
Y = 0.8 0.55535 0.5683 0.56927 0.57002 0.57007
Y = 1.0 0.49146 0.51297 0.51516 0.51656 0.51681

T ∗
0 Y = 0 17.19057 16.95006 16.94869 16.91084 16.91722

Y = 0.2 4.71812 4.63447 4.63666 4.61768 4.62143
Y = 0.4 1.05493 0.9882 0.98504 0.97865 0.97915
Y = 0.6 0.24144 0.21384 0.21215 0.21031 0.2103
Y = 0.8 0.07175 0.05998 0.05917 0.05852 0.05847
y = 1.0 0.03982 0.03235 0.03164 0.03119 0.03111

Table 4. Base-state solutions for different grid sizes. Point B, (Mt , Qt ) = (4.75, 51.31).
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Appendix B. Spatial resolution in the numerical methods
The determination of grid size ∆ (or the number of the grid points, n) is important

for the calculation of both the base-state solutions and eigenvalues. If ∆ is too large,
the results are grid-size-dependent; if it is too small, the calculation time is too long
and there is the problem of rounding error accumulation. Therefore, a moderate grid
size is sought to obtain the accurate results.
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Kx n ∆ Ωr |Ωi |

0 50 0.02 0.00161 0
100 0.01 0.00234 0
150 0.0067 0.00252 0
200 0.005 0.00260 0
250 0.004 0.00263 0
300 0.0033 0.00265 0

0.5 50 0.02 −0.12439 0.07187
100 0.01 −0.12401 0.07408
150 0.0067 −0.12392 0.07457
200 0.005 −0.12389 0.07475
250 0.004 −0.12387 0.07484
300 0.0033 −0.12386 0.07488

Table 5. Eigenvalues obtained at different grid sizes. Point A, (Mt , Qt ) = (3.0, 19.83).

Kx n ∆ Ωr |Ωi |

1.0 50 0.02 −0.22632 0.07163
100 0.01 −0.22886 0.07582
150 0.0067 −0.22917 0.07699
200 0.005 −0.22926 0.07747
250 0.004 −0.22930 0.07771
300 0.0033 −0.22932 0.07784

2.2 50 0.02 0.01618 0
100 0.01 0.00516 0
150 0.0067 0.00291 0
200 0.005 0.00209 0
250 0.004 0.00169 0
300 0.0033 0.00148 0

Table 6. Eigenvalues obtained at different grid sizes. Point B, (Mt , Qt ) = (4.75, 51.31).

Table 3 and table 4 list the bed height H , solid fraction ν0 and dimensionless
granular temperature T0

∗ calculated from the base-state solution at different grid sizes
for point A and point B, respectively. It can be seen that the solutions vary little from
n= 70 to n= 100. Thus, a grid size of 0.01 is chosen for the base-state calculation.

Table 5 and table 6 list the eigenvalues (including real part Ωr and imaginary part
Ωi) calculated for different grid sizes in the stability analysis for points A and B,
respectively. Based on these results, a grid size of 0.005 is selected for the stability
analysis.
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